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I. INTRODUCTION

Monte Carlo dose attenuation kernels for the transport of

fission electrons through aluminum have been calculated for

simple slab and spherical geometries. These kernels are pre-

sented in Section II.

Solid angle sectoring methods are commonly used for complex

geometry calculations. The selection of kernels appropriate to

sectoring calculations is discussed in Section III.

Several factors of 2 are sometimes handled incorrectly

in space radiation dose calculations. These factors and some

1 mathematical relationships are presented in Section IV.

}i Section V derives several relationships for spherical shields

and describes sectoring kernels that predict correct results in

two simple shield geometies.

Section VI reiterates prior information on sectoring kernels

and includes a scheme for predicting shield curvature effects.

j Dose attenuation data for slab, sphey *< r,&I1, and solid

sphere shields are presented in the appendix. These data span

the energy range of 0.1 to 8 VeV and materials from hydrogen

through uranium.
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II. KERNELS

Attenuation kernels are denoted as functions of shield

thickness t; e.g., K(t) is the response behind a shield of

thickness t. The units of t are given variously as cm, mils,

and g/cM2 ,

All kernels are presented in the form used for sectoring

analyses. If R denotes the total response e.g., dose

I/sector\L I solid
anmesMod/ K(t of sector) (1)Rcomplex sld 4

geometry angle

sectors

This implies that slab shield kernels which have a source inci-

dent on only one side are multiplied by 2 to form K(t). Thus,

source-shield configurations have mirror symmetry in the dose

plane.

For example, a dose point between two slab shields of

thicknessess t 1 and t 2 would have the response computed as

R total K(td) + i K(t 2 ) (2)

and if t2 becomes infinite
I2

R .jK(t 1 ) (3)

tý)tal
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The geometry of the shield is denoted by a subscript on

the kernel K:

K_(t) is two times the dose behind a slab shield of thick-

ness, t. No backscatter material is present. Radiation is

incident from one side only.

M_(t) is two times the dose behind a slab shield of thick-

ness, t, with an infinite backscatter material. Radiation

is incident from one side only.

K=(t) is the dose between two slab shields each of thick-

ness, t. Radiation is incident from both sides. The

symmetry makes K,(t) equivalent to two times the dose behind

a shield of thickness, t, with a backscatterer of thickness

t.

KM(t) is the dose at 'he center of a spherical shell shield

of thickness, t. The inner radius of the spherical shell is

essentially infinite. Radiation is incident on the outside

of the shell. Radiation transmitted through the shell can

ba;2scatter from the shell.

K.(t) is the dose at the center of a solid spherical shield

of thickness, t, with radiation incident on the outer surface

- of the sphere.

The dose for zero shield thickness is the same for geometries

without a backscatterer

K_(O) O)- o.(O) k( Kfree space (4)

0 fr5



The double slab shield configuration is equivalent to an infinite

backscatterer for large thickness so that

K_(t) - K.(t) for large t (5)

CALCULATION TECHNIQUES

An isotropic radiation field 0o in particles/cm2 is described

as a transport problem by a surface source or current of strength

0/4 particles/cm2 The surface on which the source is defined

must be exterior to the shield geometry. A cosine angular distri-

bution relative to the inward surface normal is required to

reproduce an isoLropic flux inside the souirce surface.

A fission electron energy distribution was used in the dose

calculations. The energy variation of this spectrum was repre-

sented by (normalizing constants suppressed)

f(E) a exp(- 0.575 E - 0.055 E2 ) particles/MeV

c exp - (6)

where E is the electron energy in MeV, restricted to the range

0 < E < 7 VeV. This energy dependence was Integrated numerically

for normalization to a fluence of one olectron/cm2.

The Monte Carlo calculatiots were preformed using adjoitt

methods described iv Reference 1. Histories were generated for

1. Jordan, T.'., An Adjoint Charged Particle Transport Method,
EMP.L7f.072, July 1976.
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an infinite medium of aluminum. Shield geometries of various

thicknesses were oierlaid onto the infinite medium electron

tracks to obtain a dose contribution for each geometry (Ref. 2).

The production calculation required 5 minutes (CDC 7600) to obtain

simultaneous results for the five geometries and 40 shield thick-

nessess. Calculated standard deviations less than 2 percent

were obtained for most data points.

CALCULATION RESULTS

Dose rates are expressed as point results in rad (Si) units.

No silicon was actually included in the ilations. The flux

spectrum obtained in aluminum was LET weighted, i.e., folded

with the restricted linear energy transfer function for silicon.

The restricted energy transfer excluded energy loss mechanisms

included in the transport simulation, i.e., radiative energy loss

and energy losses corresponding to high energy secondary electrons.

The effect of including a backscatter material in dose

calculations is shown in Vigure 3. The lower curve is for a

one side slab without a backjcatterer, K_(t#, and the upper

curve is for the two slab shield KO(t). i.e., backscatter

thickness equal to shield thickness. For shield thicknesses

greater than 10 mils aluminum, the backscattered electrons add

about 30 percent to the dose. Restatzd. the absence of a

backscA~tt." material reduces triz dose by -pproximately 35 per-

cent.

2. Jordan. T.M., Parametric Adjoint Electron Transport in 1-D
Geometries, F.AP.L76.097. September 1976.
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The effect of infinte backing is mnst notable at zero

thickness where the slab dose is increased by approximately

30 percent. This is indicated by the highest curve in the

vicinity of zero shield thickness The infinitc backing curve

cannot be distinguished from the double shield curve for thick-

nesses greater than 25 mils.

The effect of shield geometry on dose is shown in Figure 2.

The lowest curves are for the slab geometry shields which have

backing.

The intermediate curve is for spherical shell shields.

The shell shield curve roughly parallels the slab shield curve

for thicknesses of 30 mils or more. The shell shield dose is

higher by 30 to 50 percent. The parallel nature of the slab

and s .ell curves implies that the angular distribution of the

electrons has an approximate equilibrium since, for an infinite

spherical shell radius

X Mo(t) 41K (tl) (7)

where K.(t.u) is the dose per steradian for slab geometry as a

function of u. the cosine of the angle between the alab normal

and the particle direction.

The highest dose curve Is for a solid sphere shield gooetry.

For this geocetry. the dose curve diverges froc the other curve3

as theb shield thickness increases.

9
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The enhanced dose, or focusing, results froru the shorter

average particle paths traversed in the spherical geometry.

More of the external source electrons are able to penetrate the

shield in the solid sphere geometry. As the shield thickness

approaches the end of the effective particle range, only a small

------ cfarem the slab shield surface can contribute to the

dose. For the same shield thickness, the entire surface of the

solid sphere will contribute to the dose.

ACCURACY

The accurac,." of these curves is determined partially by

comparisons wit. other calculations. tigure 3 is a comparison

of the infinite backed dose (slab shield) with Morel's Monte

Carlo calculations repnrted in Reference 3.

The calculated results in Reference 3 have been multiplied

by 2 in correspondence with the terminology used here (all one

side slab results multiplied by 2 to correpond uith 4n source

incidence). Tt.ese data are for the average dose in a silicon

device 1 mm thick with infinite backing in contrast to the point

dose results reported earliter. Silicon and aluminum have very

similar cross sections. Therefore, the 1 mm S3 is comparable to

23 mils of aluminum. This average dose data has been plotted

in historgram form.

3. Morel, J.E., Doses to a Thin Silicon Slab Behind Aluminum,
Aluminum-Tantalum. and Aluminum-Lead Shields for Isotropic
Fission Electrons, AFwL-DTr-TN-75-1, Air Force Weapons

Saboratory, ir~tanI AFB. Wex, July 1975.
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There is a definite divergence of the calculations which

approaches 30 percent at 175 to 200 mils. The reason for the

divergence cannot be identified from material at hand.

The experimental results shown in Reference 4* have been

used in previous validations of the adjoint method. These

results were obtained from hollow boxes of various aluminum

wall thicknesses. The data for 30, 60, and 124 mil walls are

used for comparison by the fco-lowing steps: near and far wall

doses are added, then "he sum is doubled. The experimental

data are for a source incident on one wall. Adding near and

far wall dose accountL approximately for backscatter. Doubling

accounts for two side incit'nce.

BWELISSTRAHLLNG

The infinite medium tr'acking models used for these calcula-

tions did not produce sufficient photons to yield accurate photon

dose results in the small shield gomotries. Peripheral numer-

ical calculation indicates a peak bremsstrahlung dose of spprox-

imately 5 x 1C-12 raa (Si) par unit free space e~ectron fluence

in the slab geometries.

4. Varn Gunten, 0.0., Three Dimensional Fiectron Dose Distribu-
I I tion Measurements, University of Maryland Thasis, 197..

* Van Gunten, 0.0., Private Communication on reduction of
experimencal data by two, February 1976.

13
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III. SECTORING

Complex geometry dose calculations can be performed effi-

ciently by adjoiit Monte Carlo. The most usual calculation method,

however, is solid angle sectoring.

Sectoring calculations must neglect details of the particle

transport. However, these approximate methods should yield the

correct answer when applied to simple geometries.

The usual sectoring method is to integrate numerically

R f K(t(u)) du (8)

41r

where t(u) is the mass thickness encountered between the detector

point and the exterior of the vehicle along the direction u.

The K(t) is a response attenuation kernel either tabulated or curve

fit as a function of mass thickness t.

By requiring that sectoring methods yield the correct dose

at the center of a solid sphere of radius t, it follows that

K(t) must be the solid sphere kernel K.(t).

Requiring that sectoring also produce the correct dose at

the center of a semi-infinite slab of thickness 2t, it follows

that
I.

_ R K K.(t/4) du (9)

0

14



Calculating partial derivatives with respect to t (easier if the

integration variable is first changed to r = t/V) yields

dK_(t)
K.(t) = K(t) - t dt (10)

This relationship must be satisfied by the kernels if sectoring

analysis gives the correct answer for the limiting cases of

simple slab or solid sphere shields. The relationship has been

reported in a private communication.*

The relationship is exact for cosine sources and the

straight ahead approximation, i.e., particle transport with

* energy loss but no angular deflections. The straight ahead

approximation is applicable to and used for heavy charged parti-

cles. Application to electron problems is suspect for energies

less than tens of MeV.

Equation 10 is also exact for the following hypothetical

transport problem: a uniform infinite medium and a cosine angular

distribution surface source which emits positive (real) particles

into the hemisphere towards the detector and negative (not real)

particles into the hemisphere away from the detector.

The hypothetical problem has two aspects not encountered

in real problems. Source particles emitted into the forward

(detector) hemisphere may make multiple passes across the source

plane, enhancing response kernels. Negative particles emitted

* Smith, E.C., Private Communication, Hughes, 1976.
Radke, G., Private Communication, AFWL, 1977.

15
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into the backward hemisphere may also cross the source plane

one or more times, contributing and, thereby, decreasing the

kernel. The net effect is a kernel decrease.

Arguing that particles reflected across the source plane

are a second order effect gives credence to using the relation-

ship generally. Mcre support is obtained by checking the

equation for problems where both slab and sphere kernels are

available.

Slab and sphere kernels have been calculated for Jovian

ele-ctron spectra. Testing of Equation 10 for Jovian kernels

is shown in Figure 4. The agreement is good for both aluminum

ana tungsten. However, the Jovian spectrum has appreciable

content above 10 MeV where the straight ahead approximation

also starts, to apply.

Equation 10 can be tested on the fission electron kernels

with the results shown in Figure 5. Again, the agreement is

good. The fission electron spectrum is harder than radiation

belt spectra. However, it has sufficient low energy content,

less than 2 MeV, to suggest that Equation 10 holds under fairly

general conditions.

The following steps are suggested for sectoring analysis:

(1) evaluate K_(t); i.e.. a Monte Carlo calculation for

a source emitting J particle with a cosine distribution

in the forward hemisphere incident on a slab shield of

infinite thickness.

16
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(2) calculate K.(t) using Equation 10;

(3) use K.(t) in the sectoring analysis.

The infinite slab thickness ensures that backscattered

particles are accounted for in the analysis. The kernel K.(t)

is calculated as basic data since almost all Mcnte Carlo codes
can compute it. Nonadjoint methods have difficulties when

computing K.(t) directly.

The relationship between slab and sphere kernels applies

to solid spheres and not spherical shells. From the adjoint

calculations for spherical geometries, it is seen that the

solid sphere response is greater than the spherical shell

response. However, the solid sphere kernel will yield solid

sphere response at the center of a spherical shell. This over

estimate for one simple geometry is deemed better than using

kernels which under estimate the response in other simple

geometries.

A more complicated sectoring kernel is given in Section V.

This kernel requires modifications to the sectoring program.

The kernel eliminates the conservatism of the solid sphere kernel

when applied to shell geometries and produces the correct response

when applied to simple geometry solid shields, slabs, and the

interior of spherical shells.

j1 19
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IV. MANIPULATIONS

A space radiation environment is usually expressed as a

scalar fluence (or flux) differential in energy

OE (particles/cm2 MeY) (11)

or, equivalently, by the integral scalar fluence

•(E)O (E') dEl (12)

where

do

This fluence environment has inverse area units which is

often misleading. The density per unit area is measured on a

surface perpendicular to the direction of particle motion. A

scalar fluence implies integration over all particle disections.

Therefore, the den.-ity per unit area of a surface with fixed

orientation cannot always be determined.

With isotropy, the differential angular flux can be written

as

O(x,u.E) - •--) particles/cm2 eeV steradian second (i4)

where x denotes position and u is a unit vector in the direction

of particle motion.

20



A more basic definition of the differential angular flux

is the particle density

3 3
0(xUE) (particles/cm MeV steradian) (15)

multiplied by the particle speed v(E) in cm/s

*(x,•E) o(x.U.E) v(E) (16)

The vector current is defined as the flux times the particle

lirection vector u

~(~.) u O(x~uE) (17)

the differential vector current can also be written as the

particle density times the vector velocity I(F) - u v(E)

1(x.uE) - v(E) o(x.u.E) (18)

Defining a fixed unit area in space and letting n denote

the unit normal to this area (on the side containing the pro-

jection of u), then the number of particles crossing this unit

area is the comionent of the current j along n

(19)
Jn( .•,0 -i'( (.u.E) (20)

S- •-• u ,.E) 1)

21



This same relationship can be obtained by considering the

number of particles which cross the area per unit time. For a

time interval dt, all particles closer than v(E) dt will cross

the surface (ignoring interactions). The volume of particles

with direction u that cross the surface is a tube of length

v(E) dt and cross sectional area dA - dAn nu where dAn is the

differential area perpendicular to n.

dV - dAn n.u v(E) dt (22)

j'--,(E~d,---

Figure 6. Flux Tube Geometry

multiplying the volume by the particle density gives the total

number of particles crossing the area dAn. Dlviding by the area

and the time interval dt yields the total number of particles

crossIMP per unit area and per unit time

jn(x .u. E) ,o(x.u ) dV/dA dt n.u v(E) o(x.u.E)

=_n'u_ E) (23)

Thus, the number of particles crossing a surface with orienta-

tion n is equal to the flux only for particle directions u

parallel to n so that n-u - 1. For all other particle directions.

the particles crossing per unit area perpendicular to n is the

Sflux reduced by the factor n-u.

V2



For space radiation problems, the initial population of

particles is specified by the particle current entering a surface

"which surrounds the vehicle

Jn(.x,uE) (E) un (24)

The number of particles entering this surface per unit area is

given by an integration over entering directions

jn(_XE) f u.n du (25)
i •. -u-n>O

Using the cosine of the polar angle measured from n. u. and the

azimuthal angle measured around n. 8.

2w 1

f 4 u du de V -E) (26)

Thus, the number of particles entering the surface per unit

area is */4. Similarly. in the absence of interactions inside the

surface. the number of particles leaving the surface per unit area

is t/4 for a not flow of zero. Both the entrance and exit currents

have a cosine distribution relative to the surface normal.

ThAZSPORT KEMELS-

The response at a component is determined by an integration

I of the form

R fJ S°(P) M(P.P') D°(P') dP dP' (27)

*2 3



%Iaere S°(P) denotes the density of source particles, M(P,P')

is the flux at PI per unit source at P and D0 (PI) is the response

per unit flux at P'. An abbreviated notation has been used for

particle coordinates

P = x,u,E Pt - xt' ut ,E'

dP = cx du dE dP' = dx' du' dE" (28)

The discussion is now limited to a fixed source with a

separable energy dependence

S°(x'uE) = S°(xu) f(E) (29)

where f(E) is the normalized source spectrum, and a point

isotropic detector

D°(x',u',E') = 6(x' - x0) g(E') (30)

where 6 is the Dirac delta function and g(E') is the energy

dependence of the response per unit flux.

For a uniform infinite medium, the total response can now

be written as

R = f9cu (x,u,x ) dx du (31)

where the kernal M is the response at 2i, per source particle

emitte6 at x in the direction u integrated over source energy,

and energy and direction at the detector

24



M(xou,) =]~(E) M(x,R,E ,x ,u',E') g(E') dEI dul dE (32)

Scan be represented by

SM(x,u,x o) = (r,u-ul)/r 2 r Ix .o""xI

-0Su' = - x / (33)

since only the source and detector separation r and relative

orientation u.u' are pertinant parameters for an infinite medium.

The response kernel K can be determined by any number of

methods, e.g., Monte Carlo. For the following discussions, the

method of calculation and the actual variation with distance and

direction is not required.

rhe volume spatial integration over the source for the

integral response can be written in spherical coordinates

dx r dr du' (34)

with an origin at the detector point x The R integral becomes-0

R f 0( Q0 - ru',u) K(r,u-u') du' du dr (35)

For a surface source, the source density can be written

So(xu) S°(x'u) 6(p) (36)

25



where 6(p) is a one-dimensional delta function in a thickness

variable p measured perpendicular to 'he surface, i.e., measured

along n. Using a delta function transformation

6(p) = 6(r -s) = (r ,- s) (37)

where s is the distance to the surface along -u'. Substituting

into the integral response equation and performing the integra-

tion over r yields

/S du du '
R =ffSo°( su',u) K(s,uu,) ut (3)

If the source per unit area is spatially constant

0S°(x o -su',u) So(u)

R=ffo]• [sR., du du'
11 °u)gsuu)n~u_ (39)

If the source is azimuthally symmetric around n

S o() j •o(n_..) / 2v•

1 [(3oqn,!) K(s/u.u du du'J.n K ') -T (40)

If the angular dependence relative to the surface normal is

cosine and the total emission in the forward hemisphere is

2
particles/cm then
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0So(__) = n._u / 2

R _ f1..u K(s,u.u,) d (4l)R = -- du du'
47a .!?1 U _ _ (41)

If particles transport straight ahead.,(no deflections) then

K(s,u.u') = K(s) S(u.u' - 1) / 21

= K(s) (u - u') (42)

f.u K(s,u-ul) du = K(s) n-u'

•R - JK(s) du' (43)

a If the uniform infinite medium is a void

K~s) =1I

R=4-- ' = 1 (44)

For general problems, K and S0 are expanded as Legendre

series

K(suu4) T - 0 (21 + 1) K (s) P(u~ u,4

S0  . I (2J + 1) so P(u.n) (46)

27

27



*i * -. . . . .. .. . - .. . -•ml +w • ," : --" • - , . " ' .

where Pk(u) is the kth Legendre polynomial and the expansion

coefficients are

Ki(s) = 2,r K(s,P) Pi(v) di. (47)
-l

1

f s Pj(.n) (48)

Substitution of the series into the response integral yields

R 4=1r S i(s) dP(u dn) (49)

The aadition theorem for Legendre polynomials allows writing

P'(u'u') = Ppu.n) Pi(nI.'u) + f(e) (50)

where 0 is an azimuthal angle measured around ri and f(e) is 21r

periodic. Integrating over u

fPj(u.n) [Pl(u'n) P(n'u')+ f(e)] du

= 47r
21 + 1 Pi(n'u') 6ij (51)

where j is the Kronecker delta, and the integral response isii

• •.m •21 + I odu'
._IR A= Sof Pi8 o u (52)
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For a hypothetical cosine surface source emitting * particle in

the forward hemisphere, and -* particle in the backward hemisphere

0 = u.n / 4S=•iS Mu-- =1,I 1 (53)
J3

i.e., only the first expansion coefficient is nonzero. The

integral response becomes

I / du'
S= 4-• 1K(s) P (n~u') (54)

1 fKl(s) d (5

1 f- -- (55)

since Pl(n.u') = n'u'.

* For a point in the center of a sphere, s = t (the radius)

for all directions so that

R.(t) = K1(t) (56)

For a point midway between two planes separated by 2t, s =t/u

where u is the cosine of the angle measured from the normal to

the planes, and

2i

R 1i• R(t) =2 KiZlthu) du ci8

f

ds
t K]s) - (57)

f
t
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Differentiating with respect to t

dR_ R= K1 (t) ( - (58)
- - -- ( - )/(. )

dT t t

or

R.(t) = R(t) - t (t) (59)
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V. ANOTHER SECTORING KERNEL

The dose at a point at radius a inside a solid sphere of

radius b = a + t, is denoted by R 0 (a,t), where the cosine source

is applied at the larger radius, a + t, and the sphere is a

* subset of a uniform infinite medium. It follows from Equation

52 that

R (a~t K1s du'

,f4'r

K (s(ij)) du

-l (60)

where the law of cosines yields

2 2 2 2
b a + s + 2 a su~ ->s -Pa + ;b2 a2 (1 - 2I) (61)

Assuming the sphere is hollow for r < a and that the cavity

has little effect on the inward dose.kernel

R (at f Ks) d + f•(s) d (62)

inward directed particles traversing
particles cavity
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For the particles traversing the cavity, the distance through

material is now

s =-pa + 4 b2 a2 (1 -]1 (-2u.a)

Ila + (63)

so that the upper and lower hemisphere integrat. .ons are equal

and
1

R°(a't) KI(s(p)) dp (64)
00

The angular integration is transformed to an integration
over distance using

22 -a 2 + s 2  2 2-ib a 2  s 2  b a+s h + s

ds ds 2a 2as 2  2as2  (5

where

h2 -b - a = (t + a) - a2 t2 + 2 a t (66)

so that

h hR°at = -h IS ds 1
(at) K(s) + -- C(s) ds (67)

t

Assuming

dK
K1 (s) K=(s) - s - (s) (68)
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still holds, integration by parts yields

h
Ro(at, Kf(t) + I F K=(t) - h K=(h) + K (s) d (69)

For large a,

R o(O,t) K.(t) (70)

as expected; i.e., the inside surface of the spherical shell

louks like a slab to the transporting particles.

For an inside radius wuch less than the shell thickness,

a << t

h =4t + 2 1 t 4t + at = t(l + J(2 a/t))

= t + a

dK_
K=(s) = K=(t) + d-(t) (s - t), first term expansion

dU
K=(h) = KX(t) + a Tt-(t) since h - t= a (71)

Substitution and evaluation of the integral yields

dK a dK
Ro(at)0 K.(t) t t (t) -&'(t) (72)

and for a - 0,

dU.
RoOM t) K.(t) -t -td-(t) K .(t) (73)

the solid sphere kernel, as expected.
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The forward/backward symmetry of the angular flux on the

cavity surface can be seen from the geometry. For every particle

entering the cavity in the direction u there is an equivalent

particle hitting the entrance point with direction -u.

The dose inside the spherical cavity can be obtained by an

angular dose current integration, where

J0 (a,t,P) J0 (a,t,-U) dose/steradian/cm2  (74)

In fact, for large inner radii

Jo(it, ) = J.(t,u) (75)

where J=(t,p) is the angular dose current in the semi-infinite

slab geometry, with or without a void at the detector plane.

In terms of angular dose current

0 0 I
of
0

R=(t) - 4n , J(tu) d(77)

since the angular flux and current are etated by

J(U) P OW(u) or @(i) - J(u)/V (78)
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Assuming the transmitted dose current varies as

J J(aj,t,•) ! -• A(t) pl•' (9

and if Ro(r,a,t) denotes the dose at radius r in a spherical

cavity of radius a > r, the dose can be calculated as

Ro(r,a,t) =4 Jo(a,tp') du (80)
0

For r = a, u' = u (Fig. 7c) and

1
Ro(a,a,t) = A(t) ( iL(t)-l du (81)

For r 0,W 1. and

Ro(0Oajt) - A(t)o du A(t) (82)

0

- f rIu the limit of large a

* Ro(-,-,t) R.t) and R0 (O.-.t) -Ro(t) (83)

which implies that

AM a K 0 (W (8-4)

ao(t) / M k(t) (85)
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This transmitted dose kernel is applied in complicated

geometries by assuming that materials traversed are sections

of a spherical shell. This requires dose attenuation kernel

evaluations based on to where to is an estimate of the minimum

path traversed by the radiation

Figure 8. Minimum Path Geometry

to - t(slant path) & (-n!inside + u-noutside) (86)

A combined kernel which accounts for both shell and solid

shield geometry effects is

shell shield term solid shield •er•

where it is . os=ed that

dKW dK KW(t

dt ~dt ()

t. is the distance through solid material surrounding

the dose point. zero if the point is in a cavity

to is the estimated trinimum distance through all the

other shell like shields. zero if only a soll.d shield
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t t. +to

aC(t 0 ) K0 (t) / K=(t 0 )

=1 if t0 is zero (89)

No attempt has been made to include curvature effects for the

shell shields. For to = 0, the solid shield kernel results and

for t. = 0, the angular dose, spherical shell kernel accrues.

The following steps are used to generate kernel information

using conventional slab geometry codes

(1.) K_(t) is generated rather than K=(t) to properly account
CO

for backscattered particles. The problem has a cosine

source emitting J particle into an infinitely thick slab.

(2) The backward and forward angular doses (response waighted

angular fluxes) are obtained from the same calculation.

Assuming a Monte Carlo calculation

• backward traveling
J_(t,11<-11 histories with directions

0-1~ < -Uo (90)

_t.i)-forward traveling
J-(t'>( ' histories with directions

14 (91)
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(3) Estimate the center of spherical shell kernel using

J o(t,>o 0 0Jo(t,'<-uo)

= (tP>d + J (t,p<-0)I (92)

i.e.

K0 (t) = 4rJ (t,v = 1)

= J (tU>•o) + J_(t,<-o) (3
=27r M<11v +1 0 )J (93)

(4) Calculate the ratio of sphetical shell to slab geometry

dose

a(t) = Ko(t) K_(t) 2> 1 (94)
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VI. SECTORING KERNEL SELECTION

Charged particle dose predictions for satellite and deep

space probes are usually performed by sectoring calculstions.

The accuracy of these predictions is controlled partially by one-

dimensional dose attenuation kernels. This section discusses

kernel selection in the energy domains where particles have

straight line paths and where the particles have significant

angular deflections.

Sectoring calculations assume an explicit three-dimensional

analytic geometry mockup of the spacecraft. The dose, D, at

critical points in the spacecraft is computed as

D f d2 u (95)

where u is a direction from the point to the outside of the

vehicle, t(u) is the material thickness encountered along u,

d2 u is the differential solid angle, and K(t) is a dose atteuua-

tion kernel.

This integration is performed numerically by defining many

solid angle sectors; e.g., I total sectors each of size 4n//I

steradians, for each sector i defining an average direction

S'a and evaluating
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D=4 
K(t( i))

S44_

Sum sector dose per (96)
over solid steradian
sectors angle for thickness t(ui)

The thickness t(u.) is determined by a ray trace from the

dose point along the direction u•i Three sources of error in

this type of analysis are:

(1) The fineness of the angular integration which determines

how well thin vehicle sections are resolved (or if

they are seen at all).

(2) The degree to which the radiation arriving from the

direction u i actually traverses the materials comprising

the thickness t(ui). This approximation neglects the

scatter and change of direction as the particles traverse

the materials.

(3) The extent that simple geometry used in deriving the

attenuation kernel K(t) approximates the actual

geometry of the sector.

The first error source will not be discussed further here.

It can be investigated in most codes by parameters controlling

the size of the solid angle sectors.

The latter two error sources are related since they both

require knowledge of how particles really get from the outside

of the vehicle to the dose point. A definitive answer to the

error magnitude is outside the realm of sectoring analysis and
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requires numerical nethods such as adjoint Monte Carlo (which

provides a realistic simulation of all the processes working on

the particles as they progress towards the detector point).

However, it is possible by examining some typical one-dimen-

sional geometry problems, to get some insight into the potential

magnitude of the errors in sectoring analysis and to select one

dimensional kernels that will provide both upper and lower

bounds on the dose for most three-dimensional geometries.

The capability of bracketing the true dose--by sectoring

with upper and lower bound kernels--will alleviate the accuracy

question for many dose points. When the upper/lower bound

kernels are in substantial agreement, differing by less than a

factor of 2, then a good dose prediction can be assumed (using

the upper bound kernel for conservatism in design). When there

is substantial disagreement between the upper and lower bound

dose estimates--more than a factor of 2 disagreement--further

analysis is required.

Additional analysis can include adjoint Monte Carlo, or an

in-depth review of the dose point and its surroundings. By

reviewing the local geometry of the dose point, it may be possible

to identify which of the kernel estimates is expected to best

represent a particular dose point.

The remainder of this document covers one-dimensional kernels

in some depth with the following intent:
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(1) Identify the correct kernels for specific particle types;

(2) identify the difference in dose predicted by different

kernels and the source of that difference, and

(3) provide some arguments for using specific kernels in

particular circumstances.

STRAIGHT AHEAD MODELS

Sectoring is a straight ahead transport model since the

particle transport is characterized only by the materials--t(u)--

encountered along a specific direction u.

The straight ahead method is reliable for some analyses,

e.g.,

4l) Dose from cosmic rays and protons, and

(2) dose from electrons with energies exceeding 100 MeV.

Some sectoring codes do a complete particle energy analysis

in the straight ahead approximation. The integral evaluated is,

for a given sector

K(t) - f f (E') M(E'*E,t) Do(E) dE' dE (97)

where K(t) is the dose at thickness t, *o(E') is the external

2environment (particles/cm - MeV), M(E'-*E,t) is the distribution

in energy E at the detector point for a particle that starts with

energy E' and traverses material thickness t, and D0 (E) is the

detector response (dose) to a particle of energy E.
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In the straight ahead approximation, particles lose energy

at a rate per unit path length s given by L(E), i.e.

L(E) 
(98)

Therefore, after traversing the thickness t, a particle

that starts at energy E' at the exterior of the satellite reaches

the detector point with energy E given by

?t

E =(E',t) = E' - L(E(s)) ds (99)

0

Neglecting all other processes,the basic transport kernel

M(E ÷ E,t) becomes

M(E'-* Et) = 6(E - f(E',t)) (100)

where 6 is the Dirac delta function, so that the dose K(t)

becomes

K(t) [ f *o(E') 6(E- f(E',t)) Do(E) dEdE'

0

0 *(E') Do(f(E',t)) dE' (101)

The simplast and most often used method of evaluating this

integral is to subdivide the energy domain into intervals called

groups and evaluate
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K(t) = p o(0 )AE D ( (t)) (102)

groups particles in response to these
group g particles at their
impinging on degraded energy at
vehicle the detector

where g is a group subscript, Y' is the average energy of the
g

particles in group g, AE is the group width, E (t) is the energy
g g

the particles degrade to after traversing the thickness t

t

'(t) = E- L(E(s))ds (103)
K g gf

and D (I (t)) is the response to these particles.

This simple method has one major problem. Since charged

particles range out, all groups above some critical energy make

it to the detector point while all those below that energy stop

before getting there. This yes/no on groups can cause bumpy

dose predictions unless a fine group structure is used.

An alternate way of evaluating the straight ahead dose is

presented here because it eliminates the bump problem and is a

major item that distinguishes adjoint Monte Carlo from conven-

tional particle simulation Monte Carlo.

In the integral

00
K~) / ¢(E') Do(f(E',t)) dE' (104)
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make the change of variables

E = f(E',t) E' = f-(Et) (105)

i.e.

E = f-l(E,t) = E + L(E'(s)) is (106)

0

"then

K(t) = (f-(E,t)) D (E dE (107)

where tdE'/dEI is the Jacobian of the variable transformation. A

careful evaluation of the Jacobian yields, for a single material,

dEl L- EI) (108)dE LE-

Therefore, the dose is also given by an integration over energy

at the detector point in the form
00

K(t) =] 4(f (Elt)) {LL~{ t)) D (E) dE (109)
0

which can be evaluated using group terminology aE

gKtg L( ) (Eg g (110)

groups

Now the groups are definfd at the detector, g is the average
g

energy of the particle that arrive at the detector (preassigned)
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in group g, %'(t) is the energy these particles need to hit the

satellite with to arrive at the detector with energy Eg, i.e.,

t
E(t) + L(E'(s)) ds (111)

0

This scheme eliminates any on/off bumps at the detector.

The major difference in this scheme is that particles speed

up in backtracking from the detector point to the source, and

that a factor L(E')/L(E) is introduced into the equation for

dose. The L(E')/L(E) factor accounts for the contraction/

expansion of particle group width during flight through the

vehicle materials.

Generally, stopping powers L(E) get larger at lower energies.

This causes group widths to expand as particle travel from the

source (outside the satellite) to the detector. Conversely, in

tracking particle groups from the detector to the source, groups

get narrower.

The factor L(E'(t))/L(E) is the ratio of group width at the

source to group width at the detector point for an infinitesimal

width group. (Multiple materials require products of L(E')/L(E)

terms correspondinig to the entrance energy and exit energy for

each materiAl layer.)

Most sectoring codes do not evaluate transport integrals

explicitly. The integration is performed in a one-dimensional
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code and results are supplied to the sectoring code as tabular

data ti, K(ti), i = 1, 2..... The dose for a particular sector

thickness K(t(u)) is then obtained by interpolation on thickness

t.

As mentioned previously, the straight ahead method is

accurate for hnavy charged particles and very high energy elec-

trons (> 100 MeV). However, some care must be used in selecting

the kernel K(t) since there are a variety of one-dimensional codes

Sthat can generate kernels for different source and material geome-

tries. The applicable kernel is one of the following (they are

all equal numerically because of the straight ahead model):

(1) Dose at depth t in a slab for a source o0 (E) normally

incident on the slab,

(2) dose at the center of a solid sphere of radius t for

any source that has an angular strength of o(E)/4w

particles per unit area and per unit steradian normal

to the sphere surface (particles incident at angles

other than normal never get to the sphere center),

(3) dose at the center of a spherical shell of thickness t

with the same source conditions as 2, and

(4) 41Tt 2 times the dose at the outside surface of a sphere

of outer radius t with a point source of (E) particles

MeV at the center of the sphere.
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One kernel that must not be used is the dose at the center

of a slab of thickness 2t where that slab is embedded in an

isotropic flux field of 0o(E).

Denoting this kernel by K_(t) and the correct kernel by

K(t) (the subscript look like a slab = and a sphere .), it is

seen that

fK. (t(u))K=(t) = 47 d 2u (112)

4w

2
Writing d u as da dp were a is azimuth around the slab

normal and p is the cosine of the angle between u and the slab

normal then

2w TK•(t [ K.(t/, 1 ,)
K4(t)4 da d•

2T • 2 Kf dL !j K (t/w) du (113)

Since dose usually decreases with thickness, K.-t) is less

than K.(t). Therefore, the use of a slab kernel in a sectoring

code will result in an underestimate of the true dose. (Imagine

applying the sectoring code to the sphere or slab--neither geometry

gets the right answer if K=(t) is the input kernel.)
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Making the variable transformation

x = t/iP = t/x and du =(.-t/x2 ) dv (114)

K=(t) - t .(x) - (115)

Differentiating with respect to shield thickness t

ddx K,(x)d =_(t) = .(X) + t-
dt t x2

Xt

(--

t t

thus

d•",K.(t) Km(t) t-rt K.•(t) (117)

A comment on angular distributions is warranted because

it leads naturally to the next subject. The slab kernel can

be written as

K.(t) 4v Kw(tu(118)

where K (t,u) is the dose per steradian for particles arriving

at the detector at an angle cos 1u relative to the slab nnr=-•.

Since

so
-_Ct = -l/- -l



it follows that

41K=(t,p) K.(t/L) (120)

or

1
K=(t,v) jj K (t/p) (121)

Therefore, for straight ahead dose attenuation kernels

K.(t) that decrease with thickness, the angular distribution o9

K.(t,u) gets sharply peaked along the slab normal. (K.(t/j)<<K.(t)

for values of p less than 1.) Said another way, only those

particles that are incident on the slab in some area around the

normal contribute to the dose.

ELECTRONS

I The transport of electrons below 10 teV (typical earth

"I environments) is not described by straight ahead models. The

transmission of these electrons through materials is very close

to a diffusion process; e.g., the angular distribution of

particle transmitted through surfaces is almost isotropic.

Moreover, the relative level of dose values is determined by

the actual thickness of components such as box walls rather

than the slant thickness seen by a sectoring code.

One indication of the effect of this d'ffuse transport can

be seen in simple spherical geometries. The inside surface of

• I a spherical shell of large radius looks like a slab to local

* incoming electrons (the electron range in the shell material is
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much less than the shell radius). If the transmitted electrons

retain t],etr isotropic distribution, the dose at the center of

the sphere, K (t), and everywhere inside the shell is cons~ant

and euqal to the slab do3e K_(t).

In practice, the electrons transmitted through a slab of

thickness, t, do become forward peaked, but not severely. The

angular transmission can be apprc:ximated by

4nK (t)1 t (122)
_ 0

where

U(t) = Ko(t)/K=(t)(

and is typically in the range 1 (isotropic) to 1.5. (Other

angular distributions can be used but require more parameters.

The above distribution suffers, o'oc instanice, by predicting

K=(t,p=0) = 0 if a(t) > 1). Thus, in reality, the electron

dose inside the sphere varies from K.(t) at the inside surface

to K (t) at the center, usually less thaa 50 percent.

This small variation ot dose inside a spherical shell for

electrons should be contrasted with the dose variation obtained

for protons using straight ahead models. Since

dt*K.(t) = K,.(t) - t •- Kin(t)(1)

the variation from inside surface (K.) to center (K0 ) is often

an order of magnitude or more for protons.
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Dose enhancement is also seen for electrons as the inner

radius of the spherical shell is shrunk to values on the order of

the electron range or less--the dose remains roughly constant

inside the cavity but is higher for the smaller cavity radius.

Specifically, it has been shown that for a detector point inside

a solid spherical shield, that the electron dose is given by

Kj(t) and not ki(t) (remember that K0 is the dose at the center

of a very lar;n,aearly infinite, radius sphere) where K.(t) is

dcomputed from K=(t) - t Ut K(t). This result has also been

demonstrated by adjoint Monte Carlo calculations.

Note thau KM(t) and K (t) are not equal for electrons (they

are for straight ahead models). In fact, since K (t) is on the

order of K=(t) (or as much as 50 percent larg-r), and since K.(t)

can be an order of magnitude larger than K(t), the difference

between K0 (t) and K.(t) can also be an order of magnitude for

electrons.

Reiterating the above, it is seen that the electron dose

anywhere inside a large spherical cavity with shell thickness

t is approximately Kj(t). A sectoring code will yield this same

result for the shell if K.(t' is supplied as input and the dose

point is located at the center of the sphere. However, if the

dose point is located near the inner surface of tne shell, the

sectoring code will underpredict the dose since an evaluation of

1
D K.Ctlu) du c K=(t)(15

* I
D fw K=t (125)
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is effectively obtained. This type of conservatism (underpre-

diction) cannot be tolerated in design calculations.

This tendency to underpredict cavity dose has been eliminated

in the SIGMA-II sectoring code by forcing the program to estimate

the minimum thickness, T, seen by electrons. The usual slant

thickness, t, calculated by the sectoring code is multiplied by

cosine of the angle between the direction u and the normal at

entrance and exits of U in the material

(a,' + n 2"
t= t 2  )(126)

The use of the minimum path, T, as the thickness parameter

is a much better characterization of the true transport character-

istic of electrons. The additional use of the functional form

(t )-l to characterize departure from isotropic transmission

through material layers results in a sectoring formalism that

will reproduce the correct dose in two simple geometries:

(1) dose inside a spherical shell, and

(2) dose behind a slab shield.

However, the above kernel does not account for the dose

enhancement seen in small solids containing dose points (or in

small inner radius cavities). If the small solid is viewed

separAtely--ignoring the effects of plates and voids prior to

S . .. 54



reaching the solid--it has been shorv* that the dose at points

inside the solid is given by using K.(t) as the sectoring kernel.

Therefore, if K.(t) is used as a sectoring kernel with the

usual slant path thickness,t, it will also predict the correct

dose in two simple geometries:

(1) dose inside a solid sphere, and

(2) dose behind a slab shield.

The question remains as to which of these kernels is most

* I appropriate in design calculations. In the limiting extreme

of a spherical shell shield with a very small inner radius, the

minimum path kernel underpredicts dose while in the other

extreme of a very large inner radius the solid shield kernel over-

predicts dose.

Since underestimates of dose can be critical to a mission,

it would seem that using the solid sphere kernel is best. How-

ever, shield penalties associated with over conservative dose

estimates can also jeopardize a mission. Consistency with

earlier arguments would dictate using the solid sphere kernel

and slant path sectoring. However, solid shield geometries are

seldom encountered in practice--each sector usually involves

"* "shown" by explicit adjoint Monte Carlo calculation and by an
analytic derivation for an idealized problem tLat has, to
first order, all the characteristics of the real problem and,
to second order, cancelling terms that characterize the depar-
ture of the idealized problem from the real problem.
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material layers separated by voids. Calculations on several

typical points using adjoint Monte Carlo correlate much better

with the minimum path kernel.

There is a way to combine the two kernels in a systematic

method that accounts for peaking in small radius cavities. This

combined kernel does not exist in any present code but could be

added relatively easily to SIGMA-II for instance. The kernel

is discussed at the end of this section.

The correct kernels for electron dose calculations can be

obtained from one-dimensional Monte Carlo codes. Adjoint Monte

Carlo can calculate the slab, solid sphere, and spherical shell

configurations exactly.

Conventional particle simulation Monte Carlo is limited to

calculations in slab geometry (it is hard to get particles to

pass through a small volume at the center of the spheres).

However, both the spherical shell and solid sphere kernels can

be obtained from these slab geometries codes.

Specifically, the solid sphere electron dose kernel can be

obtained by the formula

dK=(t)
K.(t) K.(t) - t a (127)

The validity of the formula has been demonstrated by explicit

adjoint Monte Carlo calculations. (The formula is not exact,

but any discrepancies are comparable to the Monte Carlo error

bars). The spherical shell dose kernel can also be obtained
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from a slab Monte Carlo calculation by requesting the angular

dose (dose per steradian) in the direction along the slab normal.

The 4w times this angular dose is the same as the spherical shell

dose (the shell looks locally like a slab and the angular flux

normal to the shell is the only flux that reaches the center of

the sphere).

The source mockup is critical to the above calculations.

The dose kernels are supposed to be representative of a shield

embedded in an isotropic flux field. This isotropic flux field

is simulated by a cosine source on the surface of the shield

with a total particle source of j for a unit isotropic flux.

(It should be noted that data supplied by the National Space

Sciences Data Center on dose attenuation is iK=(t) i.e., for

* of a particle--cosine incidence--a one sided slab result).

Slab geometry Monte Carlo calculations can be performed for

finite thickness slabs or infinitely backed slabs. The better

kernel is assumed to be the infinitely backed kernel since it

includes a backscattering effect which also occurs in the

satellite, and since it is conservatively higher.

HIGH ENERGY ELECTRONS

The final topic is a specific to the Jovian electron

environment. This environment includes electrons > 100 HeV.

Therefore, the basic transport mechanisms include combinations

of straight ahead and diffusion mechanisms. Specifically,

57

a



electrons of high energy transport in an almost straight ahead

manner and then diffuse after reduction to lower energies.

One way of handling this type problem is to use multiple

kernels to describe the complete range of energies. Each band

g would have a thickness t specified such that for thickness, t,
g

less than t straight ahead models are employed while for t > tg

the thickness t' = (t - t ) (closest to the detector) would use
g

minimum thickness models. The thickness, tg, would be defined by

comparing one-dimensional calculations with straight ahead and with

explicit transport models and defining tg as the thickness where

the calcualtions depart significantly in value. This logic does

not exist in any sectoring code at this time.

A KERNEL WITH CURVATURE EFFECTS

The difference in dose obtained behind a solid sphere and

a slab shield is geometrically obvious in the straight ahead

approximation.

For the solid sphere, the point at the center of the sphere

gets particle arriving from the entire 4n steradians and each

particle has traversed the same thickness, t. For the slab, all

particles except those traversing a path along the normal, tra-

verse a path larger than t. The net affect is that only a part

of the 4v steradians contributes to the dose at depth t.

The ýame geometric effect occurs for electrons even though

the electron transport is more diffuse. The diffuse nature of

the transport makes it more difficult--for the slab geometry--



to define a precise cone boundary within which particles traverse

a thickness that allows them to reach the detector. However,

this cone exists even though its boundaries are fuzzy.

The effect of curvature on cavity dose is predicted using

the fact that electron dose is fairly uniform inside cavities

and that the electron dose at the inner surface of a cavity can

be predicted from K.(t) using slant thicknesses. Therefore, it

is possible to compute a correction factor that accounta for

the relative size of cavities ancountered during sectoring

since

dK.(t) K=(t) -t -E-K=t (128)

in solid materials even when the straight ahead model does not

apply.

Assume a is the inner radius of cavity and T is the spheri-

cal shell thickness. Then the dose at the inner surface of the

cavity is

K(T)- K( * - hK(h) Kn(x)d (129)

where h is the maximum path in the shell

7- 2ax (130)

If a is large, the evaluation gives K (T) and if a is small,
the value becoms K (T). (Note that in the above equation a,

t. T, and h are all in equivalent units. Since a is an actual
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dimension of a cavity, material thicknesses must be expressed in

the same units as a (cm) except when interpolating the kernels).

Thus, every time a cavity is encountered, an enhancement

factor can be computed for that cavity as

enhancement =-+ K > (131)

where
CO

K=(>,) f K=(x• dx1  (132)

Thus, an equation exists to predict the dose enhancement

from solid shields surrounding dose points. This equation holds

ipecifically for spherical geometry surrounding the detector

point. A critical parameter is the radius of the cavity.

"This section outlines a scheme for calculating an effective

radius of cavities. No claim for correctness of the method is

made except that it yields the correct results for the limiting

extremes of slab and spherical shields.

The curvature in a plane containing xI and x -- xi, x denotes

either (x,y), or (yz), or (z,x) -- is given by

2d X 2 3/2
Ki d 13/2+(133)

6 U
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Therefore, when a ray crosses a surface, compute the curva-

ture in the xy, yz, and zx planes from the surface equation and

define an effective curvature as the average of these three

values (or the square root of the average squares ... ). Define

the cavity radius a, as the reciprocal of this average curvature.

This process yields the following results for specific

surfaces:

plane surface K = 0 a = •, correct

spherical surface K = 1/a a = a, correct

cylindrical surface K = 1/2a a - 2a, ?

Note that the correct curvature is obtained for slab and

spherical geometries. Therefore, this prescription for cavity

radius, in conjunction with the equation for dose enhancement

as the cavity radius decreases, will give a kernel prescription

that is correct for sl.abs, spherical shells, and solid spheres.

The fact that the kernel will correctly predict these three

geometries, including cp'iity radius effects, is a strong argue-

2,ment for its use in future calculations.
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APPEND IX A

MONOENERGETIC ELECTRON ATTENUATION DATA

Dose attenuation curves are presented for monoenergetic

electrons and their secondary bremsstrahlung. Electron energies

a-re 8, 5, 3, 2, 1, 0.5, 0.25, and 0.1 MeV. Shield materials are

* I hydrogen, helium, beryllium, aluminum, copper, tungsten, and

uranium.

Attenuation curves are presented for three shield geometries,

dose between two slabs each of thickness t,D=(t), dose at the

center of a spherical shell of very large inner radius D (t),
0

and dose at the center of a solid spherical shield D (t). Each

of the shields is imbedded in a unit isotropic free space fluence.

Electron and bremsstrahlung transport were simulated by a

combination of analytic and Monte Carlo methods. Fluctuations

in the computer results were not smoothed prior to plotting.
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